傅一航,傅一航讲师,傅一航联系方式,傅一航培训师-【讲师网】
大数据 数据分析 数据挖掘 数据建模
51
鲜花排名
0
鲜花数量
扫一扫加我微信
傅一航:大数据分析综合能力提升实战(基础班)
2016-01-20 2789
对象
营业厅、呼叫中心、市场部、经营分析部等对数据分析有要求的相关人员
目的
掌握数据分析与挖掘的方法、思路、过程,提升数据分析综合能力。
内容

本课程为大数据分析初级课程,面向所有应用型人员,包括业务部门,以及数据分析部门,系统开发人员也同样需要学习。

本课程核心内容是理清大数据的本质及核心理念,培训大数据人才的数据思维模式,以解决业务问题为导向,提升学员的数据分析综合能力。

课程大纲:

第一部分:  大数据的核心理念

1、 大数据时代:你缺的不是一堆方法,而是大数据思维

2、 大数据的本质

Ø  数据,是对客观事物的描述和记录

Ø  大数据不在于大,而在于全

3、 大数据四大核心价值

Ø  用趋势图来探索产品销量规律

Ø  从谷歌的GFT产品探索用户需求变化

Ø  从大数据炒股看大数据如何探索因素的相关性

Ø  阿里巴巴预测经济危机的到来

Ø  从美国总统竞选看大数据对选民行为进行分析

4、 大数据价值落地的三个关键环节

Ø  业务数据化

Ø  数据信息化

Ø  信息策略化

案例:喜欢赚“差价”的营业员(用数据管理来识别)

第二部分:  数据分析基本过程1、 数据分析简介

Ø  数据分析的三个阶段

Ø  分析方法的三大类别

2、 数据分析六步曲

3、 步骤1:明确目的--理清思路

Ø  确定分析目的:要解决什么样的业务问题

Ø  确定分析思路:分解业务问题,构建分析框架

4、 步骤2:数据收集—准备数据

Ø  明确收集数据范围

Ø  确定收集来源

Ø  确定收集方法

5、 步骤3:数据预处理—准备数据

Ø  数据质量评估

Ø  数据清洗、数据处理和变量处理

Ø  探索性分析

6、 步骤4:数据分析--寻找答案

Ø  选择合适的分析方法

Ø  构建合适的分析模型

Ø  选择合适的分析工具

7、 步骤5:数据展示--观点表达

Ø  选择恰当的图表

Ø  选择合适的可视化工具

8、 步骤6:报表撰写--观点表达

Ø  选择报告种类

Ø  完整的报告结构

9、 演练:手机大数据精准营销案例赏析

Ø  如何搭建精准营销分析框架?

Ø  精准营销分析的过程和步骤?

Ø  精准营销分析结果呈现

第三部分:  统计分析方法实战篇

问题:数据分析有什么方法可依?不同的方法适用解决什么样的问题?

1、 数据分析方法的层次

Ø  描述性分析法(对比/分组/结构/趋势/交叉…)

Ø  相关性分析法(相关/方差/卡方…)

Ø  预测性分析法(回归/时序/决策树/神经网络…)

Ø  专题性分析法(聚类/关联/RFM模型/…)

2、 统计分析基础

Ø  统计分析两大要素

Ø  统计分析三个步骤

3、 统计分析常用指标

Ø  汇总方式:计数、求和、百分比(增跌幅)

Ø  集中程度:均值、中位数、众数

Ø  离散程度:极差、方差/标准差、IQR

Ø  分布形态:偏度、峰度

4、 基本分析方法及其适用场景

Ø  对比分析(查看数据差距)

演练:寻找用户的地域分布规律

演练:寻找公司主打产品

演练:用数据来探索增量不增收困境的解决方案

案例:银行ATM柜员机现金管理分析(银行)

Ø  分布分析(查看数据分布)

案例:排班后面隐藏的猫腻

案例:通信运营商的流量套餐划分合理性的评估

演练:银行用户消费层次分析(银行)

演练:呼叫中心接听电话效率分析(呼叫中心)

演练:客服中心科学排班人数需求分析(客服中心)

演练:客户年龄分布/消费分布分析

Ø  结构分析(评估事物构成)

案例:用户市场占比结构分析

案例:物流费用占比结构分析(物流)

案例:中移动用户群动态结构分析

演练:用户结构/收入结构/产品结构的分析

Ø  趋势分析(发现事物随时间的变化规律)

案例:破解零售店销售规律

案例:手机销量的淡旺季分析

演练:发现产品销售的时间规律

Ø  交叉分析(多维数据分析)

演练:用户性别+地域分布分析

演练:不同区域的产品偏好分析

演练:不同教育水平的业务套餐偏好分析

5、 最合适的分析方法才是硬道理。

第四部分:  数据分析思路篇

问题:数据分析思路是怎样的?如何才能全面/系统地分析而不遗漏?

1、 常用分析思路模型

2、 企业外部环境分析(PEST分析法)

案例:电信行业外部环境分析

3、 用户消费行为分析(5W2H分析法)

案例讨论:搭建用户消费习惯的分析框架(5W2H)

4、 公司整体经营情况分析(4P营销理论)

5、 业务问题专题分析(逻辑树分析法)

案例:用户增长缓慢分析

6、 用户使用行为研究(用户使用行为分析法)

案例:终端销售流程分析

第五部分:  数据分析策略

问题:数据多,看不明白,不知道从何处看出业务问题?

1、 数据分析策略

Ø  先宏观,后微观

Ø  先整体,再部分

Ø  先普遍,再个别

Ø  先单维,再多维

Ø  先表象,再根因

Ø  先过去,再未来

2、 数据解读要诀

Ø  看差距,找短板

Ø  看极值,评优劣

Ø  看分布,分层次

Ø  看结构,思重点

Ø  看趋势,思重点

Ø  看峰谷,找规律

Ø  看异常,找原因

3、 解读要符合业务逻辑

案例:营业厅客流趋势分析

第六部分:  数据呈现(根据需要讲解,课件留给学员参考)

1、 常用图形类型及选择原则

2、 基本图形画图技巧

3、 图形美化原则

4、 表格美化技巧

案例:绘图示例

第七部分:  分析报告撰写(根据需要讲解,课件留给学员参考)

问题:如何让你的分析报告显得更专业?

1、 分析报告的种类与作用

2、 报告的结构

3、 报告命名的要求

4、 报告的目录结构

5、 前言

6、 正文

7、 结论与建议

第八部分:  Power Query预处理工具实战篇

1、 Power BI组件框架

Ø  Power Query超级查询器

Ø  Power Pivot超级透视表

Ø  Power View交互式图表工具

2、 获取和转换(Power Query)

Ø  数据处理的常见问题

Ø  PQ功能简介

3、 多数据源读取

Ø  多数据源读取

演练:从文件/Excel/数据库/Web页获取数据源

4、 数据组合/集成

Ø  数据的追加

Ø  变量的合并

Ø  文件夹合并

演练:数据集成(追加、合并、文件夹)

5、 数据转换

Ø  数据表的管理

Ø  数据类型和格式

Ø  数据列的操作

Ø  数据行的操作

演练:数据预处理操作

6、 PQ的本质—M语言

Ø  强大的M语言

第九部分:  Power View交互式图表工具实战篇

问题:如何让你的分析结果更直观易懂?如何让数据“慧”说话?

1、 图表类型与作用

2、 常用图形及适用场景

3、 Power view简介

4、 常用图表制作

Ø  柱状图、条形图

Ø  折线图、饼图

5、 复杂图形制作

Ø  双坐标图(不同量纲呈现)

Ø  对称条形图(对比)

Ø  散点图/气泡图(矩阵分析法)

Ø  瀑布图(成本、收益构成分析)

Ø  漏斗图(用户转化率分析)

演练:图表制作与演示

6、 交互式图表

7、 分层钻取

8、 四种筛选器

第十部分:  Power Pivot数据建模工具实战篇

1、 Power Pivot简介

2、 PP基本功能

Ø  数据分类

Ø  汇总方式

3、 超级透视表

Ø  建模的核心:筛选器与计算器

Ø  建立多表关系模型

Ø  关系管理:新建、修改、删除

演练:数据预处理操作

4、 度量值

Ø  度量值定义

Ø  度量值计算

Ø  度量值的双层筛选

演练:度量值使用

5、 计算列

Ø  新建列

Ø  列与度量值的区别

6、 DAX数据分析表达式

Ø  DAX公式

Ø  DAX运算符

Ø  DAX函数

Ø  DAX高级筛选函数

7、 上下文

Ø  行上下文

Ø  筛选上下文

Ø  度量值的计算原理

Ø  上下文冲突时的上下文处理

结束:课程总结与问题答疑。


全部评论 (0)
讲师网长沙站 cs.jiangshi.org 由加盟商 杭州讲师云科技有限公司 独家运营
培训业务联系:小文老师 18681582316

Copyright©2008-2024 版权所有 浙ICP备06026258号-1 浙公网安备 33010802003509号
杭州讲师网络科技有限公司 更多城市分站招商中